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Short Papers

Analysis of Lossy Inhomogeneous Waveguides

Using Shooting Methods

R. E. McINTOSH, SENIOR MEMBER, IEEE, AND ~. J. TURGEON,

STUPENT MEMBER, IEEE

Absfracf—Shooting methods are used to analyze rectangular

waveguides containing inhomogeneous lossy dielectrics. The tech-

nique obtains the electromagnetic fields inside the waveguide by

solving Maxwell% equations using trial and error procedures to match

the boundary conditions at the conducting waveguide surface. Dis-

persion and attenuation curves are obtained which show how con-

tinuous dielectric inhomogeneities and losses affect the transmission

characteristics of these waveguides.

I. INTRODUCTION -

The many applications of inhomogeneously loaded waveguides in

microwave engineering has resulted in a need for methods of cal-

culating the transmission characteristics of the waves that propagate

in such waveguides. A nt.pnber of solution methods have been devel-
oped to analyze such problems, most of which are numerical, since
only a few inhomogeneous cases can be solved in closed form [1].

Most of the methods developed are restricted to lossless inhomo-
geneities. Some of the earlier ones [2>[4] treat waveguides con-

taining one or two slabs of Iossless dielectric. Further developments
include Galerkin’s method and modification thereof [5], [6], analyti-
cal approximations [7], Rayleigh–Ritz optimization [8], [1 j, finite

difference [9], finite element (especially helpful for arbitrary wave-
guide cross sections ) [10]–[12], computer iterations [13], vector

variational [14], and shooting methods [15].
Rectangular waveguides containing Iossy dielectric slabs have also

been analyzed [13], [16]-[18]. Perhaps one of the more elegant
papers in this area was written by Gardiol [18]. Using a matrix

formulation, he treated general waveguides containing linear, in-
homogeneous, lossy, and anisotropic slabs. In principle, his formula-

tion is valid for solving waveguides which have any number of slabs
extending across them. However, in practice, the number of computer
operations prohibits the computation of waveguide propagation
constants (even for the isotropic case ) when a large number (e.g.,
more than 25) of slabs are needed to model the medium contained

inside the waveguide. This limitation is not very important in those

situations where the medium is accurately modeled by a few step
discontinuities but it can be serious when treating certain geometries
with continuously varying media.
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Fig. 1. Rectangular inhomogeneous 10SSY waveguide with width u
and height b. The. permittivity e(z) = e’(z) — je” (z j is a function
of the spatial coordinate s.

In this short paper we present an approach which differs from
Gardiol’s in the technique used to solve Maxwell’s equations. We
show that the propagation characteristics of a rectangular waveguide
loaded with an isotropic, lossy, and inhomogeneous dielectric as

shown in Fig. 1 can be found by applying shooting methods directly
to the field equations. This technique has the advantage that the

permittivity does not have to be approximated by a small number
of slabs. The field component are also available for printout and

display since they are computed in determining the dispersion curves.
The complex propagation constants for an inhomogeneous rec-

tangular waveguide are obtained by solving the first-order differential

equations (Maxwell’s equations ) using Hammings stable method
[19], started by a Runge-Kutta-Gill method. The ability to select

the size of the spatial increments used in the iteration procedure
further allows this technique to yield good accuracy for higher order
modes and strong inhomogeneities of the permittivity [15],

In Section II, Maxwell’s equations are formulated appropriately
for a rectangular geometry, and a description of the solution tech-
nique is given when the inhomogeneity can be expressed as a function
of one spatial coordinate. An example is presented in Section III to
illustrate the speed and accuracy of the method.

II. THEORY

Maxwell’s equations contain all of the necessary information to

obtain the wave propagating characteristics of waveguides. We need
only solve them inside the waveguide of width a and height b shown
in Fig. 1 subject to the appropriate boundary conditions. I?or one-
dimensional inhomogeneities in the z direction, the electric field



953SHORT PAPERS

intensity ~ and the ma~etic field intensity ~ of a wave traveling

in the +Z direction obev Maxwell’s equations. Assuming time

harmonic’ fields, they can tie written [18]:-
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where V= denotes differentiation with respect to the spatial coordinate
x, ~ = —j~(z)/~(z)]112, k = c@(z) c(z)]* ’2, w(z) is the magnetic

permeability and c(Z) is the electric permittivit~, and h = n/b
in is an int~ger giving the field variation ~n the y direction ). Further-

more, the terms under the caret sign are functions of z only and are
related to the field quantities by the relationship
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where Y = a + i~ is the complex propagation constant.
The electromagnetic fields inside a rectangular waveguide can be

obtained by simultaneously solving the set (1) by shooting methods

[15]. The solution is started by selecting the tangent ~ fields and

normal R fields to be zero at the x = O boundary. Furthermore, the

normal ~ fields and tangent ~ fields are selected to yield TE or

higher order modes as desired. We find that choosing ~ti I.--o = O

yields TE~n modes,’ f. 1=~ = O yields LSE modes, and NZ It=a = O
yielcis LSM modes.

Having chosen appropriate boundary conditions, a search for y

that results in fields that satisfy the boundary conditions at x = a
is begun. This search is initiated by seIecting starting values for both
a and ~ and computing the electromagnetic fields in the waveguide.

If the boundary conditions at z = a are satisfied, the chosen 4 is

correct because Maxwell’s equations are satkfied throughout the

region including the boundaries. The uniqueness theorem also
guarantees that the fields obtained are the only fields for which the

calculated y is a propagation parameter.
If the boundary conditions are not satisfied, another value of -y is

selected. This procedure is repeated in a systematic way (outlined
below) until the propagation parameters satisfy all boundary condi-
tions. The search for the complex propagation constant is conducted
in the following manner.

1 ) Initial values of a and @ are chosen to initiate the procedure
(e.g., for the first frequency, cro = O and B, > co/c).

2) a is kept constant while two values of 6 are sought which

1The integer m is obtained by observing the number of zero crossings
which the computed field undergoes.

satisfy the condition Re {fiU l.-. ) = Ev’ l=-. = O and ~fi {fi~ ~=-. ) =
E.” /.,.. = O.

3) a is increased in steps until the two values, & and & obtained
from step 2) approximately agree, and bounds established by the

condition that

I E, I I.-a = (-%’ 1.-.2 + E;’ Iz-.’)’/’ < c

are satisfied (where e is a small number to be approximately five

orders of mhgnitude less than the peak value of I EU / for our

example. )
The dispersion and attenuation curves are obtained by repeatirig

the previous steps for various frequencies. Once the value of y is
obtained for a given frequency, the procedure is expedited at the
next fre@ency by using that value to initiate the process.

III. EXAMPLE

To check our procedure we first obtained the fields inside an

empty waveguide. Our calculations tvere done on a CDC 3600/3800

time sharing computer system. By selecting the appropriate bound-
ary conditions, we computed the TMll mode and compared it with

the known solution. We obtained four decimal place accuracy for
the ~ when using less than 10 s of computer time. The resulting

electromagnetic fields were found to be within 0.1 percent of the
analytical solutions. For thk example, the final values of the Q’S

were obtained after approximately five tries using the search pro-
cedure outlined previously where the accuracy was determined by
the choice of e.

A. A War)eguide Example

As an example of a Iossy inhomogeneous waveguide we assume a

compleg permittivit y of the form

e(x/a) = d (x/a) — je” (x/a)

where

/(z/a) = eO[l — 2(z/a) (z/a — l)]

and

c“(z/a) = KcO[l –‘2 (*/a) (x/a – 1)] (5)

where K is a loss factor. which we will vary in our analysis. Using the
t’echniqde of Section II, the TEIO, TEZO, and LSEII modes were
obtained. The EM fields for the preceding modes were observed to
be nearly the same as those for the lossless case except for the phase

of the components of the fields with respect to each other (i.e., for
the lossless case all field components are in phase or 90” out of the

phase but this does not hold for a lossy media).
The, propagation parameters are plotted as a function of the nor-

malized wavenumber in Figs. 2 and 3. It can be seen that propaga-

tion essentially ceases for the two lossy modes shown at frequencies
below the cutoff frequencies of the TEIO and TE20 modes in a lossless
inhomogeneous waveguide (where #(z) is given by (5) and e“ (z, ) =

O). At higher frequencies, the dispersion of the Iossy waveguide 1s
s~ilar to the lossless waveguide (except for a s]ight increase in the
group velocity d&/a~ ). The homogeneous loaded waveguide of
average permittivity has an even larger group velocity for high
frequencies but a smaller group velocity for the lower frequencies.
Hence the inhomogeneous load~d wavegnide is more dispersive.

To see the effect of increasing losses on, a and .8; we have also

plotted dispersion and attenuation curves for K = 0.1. It can also

be seen that the phase velocit y of the TEIO. mode surpasses the speed

of light in free space for sufficiently low frequencies. However, the
loss coefficient ai is observed to be nonzei-o and strongly dependent

on frequency in Fig. 3. Furthe~ore we compared our. results to those
for a homogeneous loading having the same average permittwity.

We found that the loss coefficient ax of the homogeneous case was
slightly less for the high frequencies but that it became larger near
the cutoff frequency as illustrated in Fig. 3 for the TEOI mode.
Optimum transmission frequencies can be observed for both the
TEIO and TEZO modes which are reminiscent Of 10SSY homogeneous

transmission lines [1].
This technique has been found useful in obtaining dkpersion

relationships for waveguides containing continuously varying Iossy
dielectrics. The solution of such problems are of interest to those

engineers working at high microwave frequencies who must deal
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Fig. 2. Dispersion curves for & inhomogeneous 10SSY dielectric where
K is defined by K = E“16’. The dotted line represents dispersion
cKur~eg,~ the homogeneous loading of average permittivit y when
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Fig, 3. Loss curves for an inhomogeneous 10SSY dielectric TE,o mode;
TEw mode, and LSEU mode. Comparison is made with a homogeneous

10SSYdielectric (dotted line) for the TE,o mode.

with waveguides containing solid-state materials whose dielectric
properties vary over distances which cannot be neglected compared.

to a wavelength. However, for those problems where the dielectric
material is accurately modeled by a small number of dielectric slabs,

our method is cumbersome owing to the step discontinuities. In those

cases, the reader is advised to follow one of the referenced procedures.
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Operation Modes of a Waveguide Y Circulator

YOSHIHIKO AKAIWA

Afrstract-Operation modes of a waveguide Y circulator with a

circuktr and a triangular ferrite post are investigated both theoret-

ically and exjerimehtally. Field analysis is carried out taking into

consideratiori the field vsriatioii along the ferrite axis. Frequencies

are .cslcdated by assuming TM modes nearly agree with meas-

ured frequencies. It is shown that the circ~ator action occurs at

frequencies where two HE modes interfere with each other, besides

occurring at HE mode resonance frequencies. Effects of Teflon

spacers on circulator performances are investigated in detail.

I. INTRODUCTION

The waveguide Y circulator has been widely used in microwave

circuits since the first introduction by Chait and Curry [1] in 1959.
The design concepts are based on the general theory of the scattering
matrix established by Auld [2] and on theories of field analyses by
Bosma [33 and Fay and Comstock [4]. These theoiies are not

sufficient, since the scattering matrix theory never shows internal

fields of the circulator and the field analysis theory is for stripline

circulators.
Determination of operation modes is most important for circulator

design, since the circulation occurs at the mode resonance frequencies.
Surface wave modes had been considered by Skornal [5] to explain

the circulation, however, experiments were not carried out to assert
the surfaces wave modes. Little has been known about the waveguide
circulator modes for a long time. P~ecently, Owen [6] first clarified
the operation modes of a waveguide Y circulator by measuring the
eigenvalues. He showed for partial height f errites that fields vary
along the axis of the ferrite and clearly showed that circulator
operation is obtained at the resonance frequencies of the ferrite for
rotational phase eigen excitations. He identified the ferrite resonance
modes as HEnnz modes. The fact that the fields vary along the axis

of ferrite has not been taken into consideration in waveguide cir- ‘
culator theories developed before [7], [8].

Although field analysis was carried out taking into consideration

the variatirsn along the ferrite post axis for a demagnetized ferrite

post, the ferrite resonance phenomena was not recognized to be
important for circulator operation and the operation modes were
not discussed [9].
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