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Analysis of Lossy Inhomogeneous Waveguides
Using Shooting Methods

R. E. McINTOSH, sENIOR MEMBER, IEEE, AND L. J. TURGEON,
STUDENT MEMBER, IEEE

Abstract—Shooting methods are used to analyze rectangular
waveguides containing inhomogeneous lossy dielectrics. The tech-
nique obtains the electromagnetic fields inside the waveguide by
solving Maxwell’s equations using trial and error procedures to match
the boundary conditions at the conducting waveguide surface. Dis-
persion and attenuation curves are obtained which show how con-
tinuous dielectric inhomogeneities and losses affect the transmission
characteristics of these waveguides.

I. INTRODUCTION

The many applications of inhomogeneously loaded waveguides in
microwave engineering has resulted in a need for methods of cal-
culating the transmission characteristics of the waves that propagate
in such waveguides. A number of solution methods have been devel-
oped to analyze such problems, most of which are numerical, since
only a few inhomogeneous cases can be solved in closed form [17].

Most of the methods developed are restricted to lossless inhomo-
geneities. Some of the earlier ones [2]-[4] treat waveguides con-
taining one or two slabs of lossless dielectric. Further developments
include Galerkin’s method and modification thereof [5], [6], analyti-
cal approximations [[7], Rayleigh-Ritz optimization [8], [1], finite
difference [97, finite element (especially helpful for arbitrary wave-
guide cross sections) [103-[12], computer iterations [137], vector
variational [14], and shooting methods [15].

Rectangular waveguides containing lossy dielectric slabs have also
been analyzed [137, (1671-[187 Perhaps one of the more elegant
papers in this area was written by Gardiol [18]. Using a matrix
formulation, he treated general waveguides containing linear, in-
homogeneous, lossy, and anisotropic slabs. In principle, his formula-~
tion is valid for solving waveguides which have any number of slabs
extending across them. However, in practice, the number of computer
operations prohibits the computation of waveguide propagation
constants (even for the isotropic case) when a large number (e.g.,
more than 25) of slabs are needed to model the medium contained
inside the waveguide. This limitation is not very important in those
situations where the medium is accurately modeled by a few step
discontinuities but it can be serious when treating certain geometries
with continuously varying media.
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Fig. 1. Rectangular inhomogeneous lossy waveguide with width a
and height b. The permittivity €(x) = €¢(x) — je"(z) is a function
of the spatial coordinate x.

In this short paper we present an approach which differs from
Gardiol’s in the technique used to solve Maxwell’s equations. We
show that the propagation characteristics of a rectangular waveguide
loaded with an isotropic, lossy, and inhomogeneous dielectric as
shown in Fig. 1 can be found by applying shooting methods directly
to the field equations. This technique has the advantage that the
permittivity does not have to be approximated by a small number
of slabs. The field components are also available for printout and
display since they are computed in determining the dispersion curves.

The complex propagation constants for an inhomogeneous rec-
tangular waveguide are obtained by solving the first-order differential
equations (Maxwell’s equations) using Hammings stable method
[197, started by a Runge-Kutta—Gill method. The ability to select
the size of the spatial increments used in the iteration procedure
further allows this technique to yield good accuracy for higher order
modes and strong inhomogeneities of the permittivity [15].

In Section IT, Maxwell’s equations are formulated appropriately
for a rectangular geometry, and a description of the solution tech-
nique is given when the inhomogeneity can be expressed as a function
of one spatial coordinate. An example is presented in Section III to
illustrate the speed and accuracy of the method.

I1. THEORY

Maxwell’s equations contain all of the necessary information to
obtain the wave propagating characteristics of waveguides. We need
only solve them inside the waveguide of width a and height b shown
in Fig. 1 subject to the appropriate boundary conditions. For one-
dimensional inhomogeneities in the z direction, the electric field
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intensity E and the magnetic field intensity H of a wave :craveliing
in the +z direction obey Maxwell’s equations. Assuming time
harmonic fields, they can be written [18]:
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where V. denotes differentiation with respect to the spatial coordinate
z, n = —jlu(@)/e(x) 12, &k = w[p(z)e(x) ]2, uiz) is the magnetic
permeability and e(z) is the electric permittivity, and h = n/b
(n is an integer giving the field variation in the y direction). Further-
more, the terms under the caret sign are functions of x only and are
related to the field quantities by the relationship
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where v = o + 48 is the complex propagation constant.
The electromagnetic fields inside a rectangular waveguide can be
obtained by simultaneously solving the set (1) by shooting methods

[15]. The solution is started by selecting the tangent F fields and
normal H fields to be zero at the z = 0 boundary. Furthermore, the
normal E fields and tangent H fields are. selected to yleld TE or
higher order modes as desired. We find that choosing H,, Jemo = O

yields TE,., modes,! E. |0 = 0 yields LSE modes, and A, ls=0 = 0
yields LSM modes.

Having chosen appropriate boundary conditions, a search for ¥
that results in fields that satisfy the boundary conditions at z = a
is begun. This search is initiated by selecting starting values for both
« and 8 and computing the electromagnetic fields in the waveguide.
If the boundary conditions at = = @ are satisfied, the chosen 7 is
correct because Maxwell’s equations are satisfied throughout the
region including the boundaries. The uniqueness theorem also
guarantees that the fields obtained are the only fields for which the
calculated v is a propagation parameter.

If the boundary conditions are not satisfied, another value of v is
selected. This procedure is repeated in a systematic way (outlined
below) until the propagation parameters satisfy all boundary condi-
tions. The search for the complex propagation constant is conducted
in the following manner.

1) Initial values of @ and 8 are chosen to initiate the procedure
(e.g., for the first frequency, a, = 0 and By = w/c).

2) « is kept constant while two values of 8 are sought which

t The integer m is obtained by observing the number of zero crossings
which the computed field undergoes.
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satisfy the condition Re (B lsma} = B |pma = 0 and In{E, lsca} =
By’ |zma = 0.

3) a is increased in steps until the two values, 8 and £s, obtained
from step 2) approximately agree, and bounds established by the
condition that

[Ey| loma = (B Jomd® + By Jo=a®)? < e

are satisfied (where ¢ is a small humber to be approximately five
orders of mégnitude less than the peak value of | E,| for our
example. )

The dlspersmn and attenuation curves are obtained by repeatmg
the previous steps for various frequencies. Once the value of v is
obtained for a given frequency, the procedure is expedited at the
next frequency by using that value to initiate the process.

II1. EXAMPLE

To check our procedure we first obtained the fields inside an
empty waveguide. Our calculations were done on a CDC 3600/3800
time sharing computer system. By selecting the appropriate bound-
ary conditions, we computed the TM;, mode and compared it with
the known solution. We obtained four decimal place accuracy for
the 8 when using less than 10 s of computer time. The resulting
electromagnetic fields were found to be within 0.1 percent of the
analytical solutions. For this example, the final values of the g's
were obtained after approximately five tries using the search pro-
cedure outlined previously where the accuracy was determined by
the choice of e,

A. A Waveguide E’xamplé

As an example of a lossy inhomogeneous waveguide we assume a
complex permittivity of the form

e(z/a} = €(z/a) — j'(x/a)
where
é(z/a) = all —2(z/a)(r/a —1)]
and )
é'(z/a) = Kel[l — 2(z/a)(x/a — 1)] (8)

where K is a loss factor which we will vary in our analysis. Using the
fechnique of Section II, the TE;, TEy, and LSEn modes were
obtained. The EM fields for the preceding modes were observed to
be nearly the same as those for the lossless case except for the phase
of the components of the fields with respect to each other (i.e., for
the lossless case all field components are in phase or 90° out of the
phase but this does not hold for a lossy media).

The.propagation parameters are plotted as a function of the nor-
malized wavenumber in Figs. 2 and 3. It can be seen that propaga-
tion esseritially ceases for the two lossy modes shown at frequencies
below the cutoff frequencies of the TE; and TEz modes in a lossless
inhomogeneous waveguide (where ¢’ (z) is given by (5) and ¢’ (z) =
0). At higher frequencies, the dispersion of the lossy wavegulde is
similar t6 the lossless waveguide (except for a slight increase in the
group velocity dw/98). The homogeneous loaded waveguide of
average permittivity has an even larger group velocity for high
frequencies but a smaller group velocity for the lower frequencies.
Hence the inhomogeneous loaded waveguide is more dispersive.

To see the effect of increasing losses on.« and 8; we have also
plotted dispersion and attenuation curves for K = 0.1. It can also
be seen that the phase velocity of the TEy, mode surpasses the speed
of light in free space for sufficiently low frequencies. However, the
loss coefficient o is observed to be nonzero and strongly dependent
on frequency in Fig. 3. Furthermore we compared our results to those
for a homogeneous loading having the same average permittivity.
We found that the loss coefficient oA of the homogeneous case was
slightly less for the high frequencies but that it became larger near
the cutoff frequency as illustrated in Fig. 3 for the TEy, mode.
Optimum transmission frequencies can be observed for both the
TEy and TEy modes which are reminiscent of lossy homogeneous
transmission lines [17].

This technique has been found useful in obtaining dxspersmn
relationships for waveguides containing contmuously varying lossy
dielectrics. The solution of such problems are of interest to those
engineers working at high microwave frequencies who must deal
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Fig. 2. Dispersion curves for an inhomogeneous lossy dielectric where
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Fig, 3. Loss curves for an inhomogeneous lossy dielectric TE10 mode;

TEx» mode, and LSEu mode. Comparison is made with a homogeneous
lossy dielectric (dotted line) for the TEw mode.

with waveguides containing solid-state materials whose dielectric

properties vary over distances which cannot be neglected compared.

to a wavelength. However, for those problems where the dielectric
material is accurately modeled by a small number of dielectric slabs,
our method is cumbersome owing to the step discontinuities. In those
cases, the reader is advised to follow one of the referenced procedures.
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New

Operation Modes of a Waveguitie Y Ciréulator

YOSHIHIKO AKAIWA

Abstract—Operation modes of a waveguide Y circulator with a
circular and a triangular ferrite post are investigated both theoret-
ically and experimentally. Field analysis is carried out taking into
consideration the field variation along the ferrite axis. Frequencies
are calculated by assuming TM modes nearly agree with meas-
ured frequencies. It is shown that the circulator action occurs at
frequencies where two HE modes interfere with each other, besides
occurring at HE mode resonance frequencies. Effects of Teflon
spacers on circulator performances are investigated in detail.

I. INTRODUCTION

The waveguide Y circulator has been widely used in microwave
circuits since the first introduction by Chait and Curry [1] in 1959.
The design concepts are based on the general theory of the scattering
matrix established by Auld [2] and on theories of field analyses by
Bosma [3] and Fay and Comstock [47]. These theories are not
sufficient, since the scattering matrix theory never shows internal
fields of the circulator and the field analysis theory is for stripline
circulators. ) .

Determination of operation modes is most important for circulator
design, since the circulation occurs at the mode resonance frequencies.
Surface wave modes had been considered by Skomal [5] to explain
the circulation, however, experiments were not carried out to assert
the surfaces wave modes. Little has been known about the waveguide
circulator modes for a long time. Recently, Owen [6] first clarified
the operation modes of a waveguide Y circulator by measuring the
eigenvalues. He showed for partial height ferrites that fields vary
along the axis of the ferrite and clearly showed that circulator
operation is obtained at the resonance frequencies of the ferrite for
rotational phase eigen excitations. He identified the ferrite resonance
modes as HE,.; modes. The fact that the fields vary along the axis
of ferrite has not been taken into consideration in waveguide cir-
culator theories developed before [77, [8].

Although field analysis was carried out taking into consideration
the variation along the ferrite post axis for a demagnetized ferrite
post, the ferrite resonance phenomena was not recognized to be
important for circulator operation and the operation modes were
not discussed [97].
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